
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 297 (2006) 536–550

www.elsevier.com/locate/jsvi
Application of continuous wavelet transform in vibration based
damage detection method for beams and plates

M. Rucka�, K. Wilde

Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
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Abstract

In this paper a method for estimating the damage location in beam and plate structures is presented. A Plexiglas

cantilever beam and a steel plate with four fixed boundary conditions are tested experimentally. The estimated mode

shapes of the beam are analysed by the one-dimensional continuous wavelet transform. The formulation of the two-

dimensional continuous wavelet transform for plate damage detection is presented. The location of the damage is indicated

by a peak in the spatial variation of the transformed response. Applications of Gaussian wavelet for one-dimensional

problems and reverse biorthogonal wavelet for two-dimensional structures are presented. The proposed wavelet analysis

can effectively identify the defect position without knowledge of neither the structure characteristics nor its mathematical

model.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The application of wavelet transforms to a wide variety of problems is so plentiful that they have emerged as
the most promising techniques in the past decade. Wavelets help to analyse variations of values at financial
markets. The biologists use them for cell membrane recognition. The Federal Bureau of Investigation (FBI)
considers wavelet application for storage of 30 million sets of criminal fingerprints [1]. The computer scientists
exploit them in image processing like edge recognition, image searching, animation control, image
compression and even Internet traffic description. The engineers use wavelet transforms for time phenomena
study in transient processes. Recently, wavelets have been tested for structural health monitoring and damage
detection. The ability to monitor a structure and detect damage at earliest possible stage becomes an
important issue throughout the aerospace, mechanical and civil engineering communities.

The literature on wavelet transforms in the one-dimensional case is very extensive. Applicability of
various wavelets in detection of cracks in beams has been studied by Douka et al. [2], Quek et al. [3] as well as
Gentile and Messina [4]. Frame structures have been analysed by Ovanesova and Suarez [5]. For a practical
application of the wavelet damage detection techniques research on experimental data is the most im-
portant. Hong et al. [6] and Douka et al. [2] showed that the effectiveness of wavelets for damage localization
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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is limited by the measurements precision and the sampling distances. They used the dynamic mode
shapes extracted from the acceleration measurements. One accelerometer was kept as a reference input,
while the second one was moved along the beam. They preformed the measurements in 39 points of the beam.
For wavelet analysis the signal was oversampled to 390 points by a cubic spline interpolation. Rucka
and Wilde [7] used the optic displacement measurement technique that allowed the high precision
measurements of the beam static displacements in 81 points. Although current works show that only
relatively large cracks can be detected, the search for the structural damage by wavelets is a promising and
developing field of research.

The two-dimensional damage detection problems were addressed by Wang and Deng [8]. They analysed a
steel plate with an elliptical hole and subjected to a uniform tensile loading. The static displacement field
was determined by the analytical formula and was considered as input for the wavelet transform. The location
of the crack tip was found by a variation of the Haar wavelet coefficients. Douka et al. [9] studied vibra-
tions of a rectangular plate with a crack running parallel to one side of the plate. The one-dimensional
wavelet transform was successfully applied to the analytically determined mode shapes along their
vertical lines at different locations. Cracks of a relative depth varied from 10% up to 50% have been
considered. The proposed intensity factor allowed estimation of the damage size. The works based on
numerically computed plate mode shapes were presented by Chang and Chen [10] and Rucka and Wilde [11].
The wavelet transforms of the two-dimensional plate problems [8–11] were addressed by the one-dimensional
wavelet analysis since the signal lines at the different locations have been treated separately. The two-
dimensional discrete wavelet transform for detection of cracks in plates based on numerical data was
presented by Loutridis et al. [12].

The experimental researches on plate damage detection have been presented by Wilde and Rucka [13].
The experimental mode shapes of the cantilever plate have been determined by the acceleration mea-
surement in one point and impact excitation in 66 points. The relative depth of the introduced rec-
tangular defect was about 19%. The location of the damage was determined by the Gaussian wavelet
with four vanishing moments. However, the problem was approached by the one-dimensional wavelet
formulation.

In this paper a method for estimating damage localization in a beam and plate is presented. The
damage localization is based on the experimentally determined mode shapes of a cantilever beam and a plate
with four fixed supports. For the plate problem the two-dimensional formulation of the wavelet transform is
derived.

2. Continuous wavelet transform in damage detection

2.1. One-dimensional wavelet transform

A wavelet is an oscillatory, real or complex-valued function cðxÞ 2 L2ðRÞ of zero average and finite length.
Function c(x) is called a mother wavelet and L2ðRÞ denotes the Hilbert space of measurable, square-integrable
one-dimensional functions. In this paper, apart from general definition, only the real wavelets and the space
domain will be considered. The function c(x) localized in both space and frequency domains is used to create a
family of wavelets cu,s(x) formulated as

cu;sðxÞ ¼
1ffiffi
s
p c

x� u

s

� �
, (1)

where the real numbers s and u denote the scale and translation parameters, respectively.
For a given signal f ðxÞ 2 L2ðRÞ, where x denotes spatial coordinate, the continuous wavelet transform

(CWT) is the inner product of the signal function with the wavelet functions (e.g. Refs. [1,14,15]):

Wf ðu; sÞ ¼ f ;cu;s

� �
¼

1ffiffi
s
p

Z þ1
�1

f ðxÞc
x� u

s

� �
dx, (2)

where Wf (u, s) is called a wavelet coefficient for the wavelet cu,s(x) and it measures the variation of the signal
in the vicinity of u whose size is proportional to s. The integral form of the wavelet transform given by Eq. (2)
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can be rewritten as a convolution product:

Wf ðu; sÞ ¼
1ffiffi
s
p

Z þ1
�1

f ðxÞc
�ðu� xÞ

s

� �
dx ¼

1ffiffi
s
p f � c

�u

s

� �
¼ f � csðuÞ, (3)

where csðxÞ ¼ 1=
ffiffi
s
p

cðx=sÞ.
Wavelets have scale and space aspects. Owing to this the space-scale view of signals, an important property

of wavelets is their ability to react to subtle changes, breakdown points or discontinuities in a signal. In
detection of singularities of signals the vanishing moments play an important role. A wavelet has n vanishing
moments if the following equation is satisfied:Z þ1

�1

xkcðxÞdx ¼ 0; k ¼ 0; 1; 2; . . . ; n� 1. (4)

Hence the wavelet having n vanishing moments is orthogonal to polynomials up to degree n–1. Mallat [16]
proved that for wavelets with n vanishing moments and a fast decay there exist function y(x) with a fast decay
defined as follows:

cðxÞ ¼
dnyðxÞ
dxn

;

Z þ1
�1

yðxÞdxa0. (5)

For n ¼ 1 a smoothing function y(x) is the integral of a wavelet function c(x) over (�N,x) for each value of
x:

yðxÞ ¼
Z x

�1

cðuÞdu. (6)

Therefore, a wavelet with n vanishing moments can be rewritten as the nth order derivative of a function
y(x). The resulting wavelet transform can be expressed as a multiscale differential operator:

Wf ðu; sÞ ¼
snffiffi

s
p

Z þ1
�1

f ðxÞ
dn

dxn
y

x� u

s

� �
dx ¼

snffiffi
s
p

dn

dxn

Z þ1
�1

f ðxÞy
�ðu� xÞ

s

� �
dx

¼
snffiffi

s
p

dn

dun
f � y

�u

s

� �
¼ sn dn

dun
ðf � ys

_

ÞðuÞ; ys

_

ðxÞ ¼
1ffiffi
s
p y

�x

s

� �
, ð7Þ

where f � ys

_

denotes a convolution of functions. Thus wavelet transform is the nth derivative of the signal f (x)
smoothed by a function ys

_

ðxÞ at the scale s. If the signal has a singularity at a certain point u, that means, it is
not differentiable at u, then the CWT coefficients will have relatively large values. When the scale is large, the
convolution with ys

_

ðxÞ removes small signal fluctuation and therefore only detection of large variation is
possible [16]. Singularities are detected by finding the abscissa where the maxima of the wavelet transform
modulus |Wf (u, s)| converge at fine scales [14]. If the wavelet has only one vanishing moment, wavelet modulus
maxima are the maxima of the first-order derivative of f (x) smoothed by ys

_

ðxÞ. If the wavelet has two of more
vanishing moments, the modulus maxima correspond to higher derivatives.

The measured or calculated mode shape of a structure can be treated as a spatially distributed signal and the
CWT can be computed for this signal. A sudden change or peak in the analysed wavelet coefficient can
indicate the location of a crack. The possibility of damage detection by the Haar [3,8], Mexican Hat [6], Symlet
[2,9,12], Coiflet [7], Gaussian [4,7,11,13,17] or biorthogonal wavelets [5] were discussed. The considered real
wavelet characteristics are summarized in Table 1. The application of the complex-valued Gabor wavelet
function has been considered in Refs. [3,8,10].

The selection of an appropriate type of a wavelet and the choice of its number of vanishing moments is
essential for effective use of the wavelet analysis in damage detection. Hong et al. [6] proved that in the case of
crack detection in beams the number of the vanishing moments should be at least 2. Douka et al. [2] stated that
wavelets having higher number of vanishing moments provide more stable performance. However, since
wavelets with higher number of vanishing moments have longer supports, the trade-off between the number of
vanishing moments and the support sizes must be considered. Wavelets with two vanishing moments have
shorter length but they produce wavelet coefficients different from zero on all length. Using wavelets that
create maximum number of wavelet coefficients that are close to zero is proposed in this study. In the case of
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Table 1

Real wavelet characteristics

Wavelet family

name

Order N Order

Nr.Nd

No. of

vanishing

moments

Symmetry Support width Existence of

scaling function

Haar — 1 Asymmetry 1 Yes

Daubechies N N ¼ 1,2,y N Far from 2N–1 Yes

Symlet N N ¼ 2,3,y N Near from 2N–1 Yes

Coiflet N N ¼ 1,2,3,4,5 2N Near from 6N–1 Yes

Biorthogonal Nr.Nd Nr ¼ 1, Nd ¼ 1,3,5 Nr –1 Yes (Nr ¼ 1,3) 2Nd+1 Yes

Nr ¼ 2,

Nd ¼ 2,4,6,8

Nr ¼ 3,

Nd ¼ 1,3,5,7,9

Nr ¼ 4, Nd ¼ 4 Asymmetry

(Nr ¼ 2,4,5,6)Nr ¼ 5, Nd ¼ 5

Nr ¼ 6, Nd ¼ 8

Reverse

Biorthogonal Nd.Nr

Nd ¼ 1, Nr ¼ 1,3,5 Nd–1 Yes (Nd ¼ 1,3) 2Nr+1 Yes

Nd ¼ 2,

Nr ¼ 2,4,6,8

Nd ¼ 3,

Nr ¼ 1,3,5,7,9

Nd ¼ 4, Nr ¼ 4 Asymmetry

(Nd ¼ 2,4,5,6)Nd ¼ 5, Nr ¼ 5

Nd ¼ 6, Nr ¼ 8

Gaussian N N ¼ 1,2,y N Yes (N even) 10 No

Asymmetry (N odd)

Mexican hat — 2 Yes 16 No
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Fig. 1. Gaussian wavelet (gaus4): (a) wavelet function c(x); (b) function y(x).
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structural mode shapes that are similar to a combination of polynomials of the fourth order, wavelet with four
vanishing moments guarantee that non-zero values of the wavelet coefficients correspond only to the
abnormalities of the signal. For structural responses that are similar to polynomial of higher order than 4, the
use of wavelets with higher number of vanishing moments is necessary.

In this paper the Gaussian wavelet having four vanishing moments (gaus4) was chosen as the best candidate
to damage detection with one-dimensional CWT of fundamental mode shape. The advantage of Gaussian
wavelets has been discussed in Refs. [4,7,14]. The Gaussian wavelet function c(x) with smoothing function
y(x) is shown in Fig. 1.

2.2. Two-dimensional wavelet transform

The one-dimensional wavelet transform can be extended to any dimensions [18]. In this section the two-
dimensional case for plate structures damage localization is studied.
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Let f (x, y) be a signal belonging to the Hilbert L2ðR2Þ space of measurable, square-integrable two-
dimensional functions. A horizontal wavelet c1(x, y) and a vertical one c2(x, y) (Fig. 3) are constructed with
separable products of a scaling function f and a wavelet function c (Fig. 2) [14]:

c1
ðx; yÞ ¼ fðxÞcðyÞ; c2

ðx; yÞ ¼ cðxÞfðyÞ. (8)

For two directions a family of wavelets can be written as

ci
u;v;s ¼

1

s
ci x� u

s
;
y� v

s

� �
; i ¼ 1; 2. (9)

The wavelet transforms of the function f (x, y) defined with respect to each of the wavelets given by Eq. (8)
are formulated as follows:

W if ðu; v; sÞ ¼ f ;ci
u;v;s

D E
¼

1

s

Z 1
�1

Z 1
�1

f ðx; yÞci x� u

s
;
y� v

s

� �
dxdy

¼
1

s
f � ci �u

s
;
�v

s

� �
¼ f � c̄

i

sðu; vÞ; i ¼ 1; 2. ð10Þ

Two wavelets c1(x, y) and c2(x, y) can be defined as the partial derivatives of the smoothing function y(x, y)
along x and y coordinates:

c1
ðx; yÞ ¼

qnyðx; yÞ
qxn

; c2
ðx; yÞ ¼

qnyðx; yÞ
qyn

, (11)

where indices 1 and 2 denote a horizontal and vertical direction, respectively, and n is a number of vanishing
moments. Two scaled wavelets can be rewritten in the form:

c1
s ðx; yÞ ¼

qnysðx; yÞ

qx
¼ sn qyðx; yÞ

qx
; c2

s ¼
qnysðx; yÞ

qy
¼ sn qyðx; yÞ

qy
(12)
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Fig. 2. Reverse biorthogonal wavelet (rbio5.5): (a) wavelet function c(x); (b) scaling f(x) function.

Fig. 3. Horizontal wavelet c1(x,y) and vertical wavelet c2(x,y) functions of rbio5.5.
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A scaled smoothing function y(x, y) is given by

yu;v;sðx; yÞ ¼
1

s
y

x� u

s
;
y� v

s

� �
. (13)

Finally, a derivative form of the wavelet transform can be expressed as

W 1f ðu; v; sÞ

W 2f ðu; v; sÞ

 !
¼

f � c̄
1

s ðu; vÞ

f � c̄
2

s ðu; vÞ

0
@

1
A ¼ f � sn @ȳs

@u
ðu; vÞ

f � sn @ȳs

@v
ðu; vÞ

0
@

1
A ¼ sn

@
@u
ðf � ȳsÞðu; vÞ

@
@v
ðf � ȳsÞðu; vÞ

0
@

1
A

¼ sn r
!
ðf � ȳsÞðu; vÞ, ð14Þ

where ȳu;v;s ¼ yu;v;sð�x;�yÞ. Therefore, the wavelet transform components of the derivative form given by
Eq. (13) can be interpreted as the coordinates of gradient vector of f (x, y) smoothed by ȳsðx; yÞ. The
W1f (u, v, s) wavelet component indicates horizontal edges while the W 2f (u, v, s) component indicates vertical
edges. The names of these components are derived from image processing.

The function

Mf ðu; v; sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 1f ðu; v; sÞ
�� ��2 þ W 2f ðu; v; sÞ

�� ��2q
(15)

is called the modulus of the wavelet transform at the scale s. Function (15) is proportional to the modulus of
the gradient vector ~rðf � ȳsÞðx; yÞ. The modulus Mf (u, v, s) has local maxima in the direction of the gradient
given by

Af ðu; v; sÞ ¼ arctan
W 2f ðu; v; sÞ

W 1f ðu; v; sÞ

� �
. (16)

The angle between the gradient vector ~rðf � ȳsÞðx; yÞ and the horizontal direction indicate locally the
direction, where the signal has the sharpest variation [19]. The direction of the gradient vector at point (x0, y0)
indicates the direction in the plane (x, y) along which the directional derivative of f (x, y) has the largest
absolute value.

In this paper the reverse biorthogonal wavelet with four vanishing moments (rbio5.5) is applied. This
wavelet provided the best effectiveness in detecting crack position. The selection has been based on
simulations with all wavelets given in Table 1 and experimental data presented in the following sections. The
performance of the reverse biorthogonal wavelet is similar to Gaussian and it has a scaling function. The
reverse biorthogonal wavelet function c(x) and its scaling function f(x) are plotted in Fig. 2.

3. Experimental investigations to determine plate mode shapes

3.1. Experimental set-up

A cantilever beam and a plate with four fixed supports are considered. The beam (Fig. 4) of length
L ¼ 480mm, width B ¼ 60mm and height H ¼ 20mm is made of polymethyl methacrylate (PMMA), sold
L1 Lr

L

H
B

a

Fig. 4. Geometry of the cracked beam.
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Fig. 5. Geometry of the plate with defect.
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by the tradenames Plexiglas. The experimentally determined material properties are: Young’s modulus
E ¼ 3420MPa, Poisson ratio n ¼ 0.32 and mass density r ¼ 1187 kg/m3. The beam contains an open crack of
length Lr ¼ 2mm and height a ¼ 7mm at a distance L1 ¼ 120mm from the clamped end. The depth of the
crack is 35% of beam height.

The steel plate of length L ¼ 560mm, width B ¼ 480mm and height H ¼ 2mm is shown in Fig. 5.
Experimentally determined material properties are: Young’s modulus E ¼ 192GPa, Poisson ratio n ¼ 0.25
and mass density r ¼ 7430 kg/m3. The plate contains a rectangular defect of length Lr ¼ 80mm, width
Br ¼ 80mm and height of a ¼ 0.5mm. The distance from the defect left–down corner to the plate left–down
corner in horizontal and vertical directions are L1 ¼ 200mm and B1 ¼ 200mm, respectively. The area of the
flaw amounts to 2.4% of the plate area and the depth of the flaw is 25% of the plate height.

The beam was subjected to a dynamic pulse load applied at 48 points along the length of the beam
perpendicular to the beam axis whereas the plate was subjected to the pulse load applied at 143 points situated
on its surface. Black dotes, plotted in Fig. 6 indicate the points of load application. The measurements were
made using one accelerometer to record the response of the structure. Dynamic pulse load was induced by the
modal hammer PCB 086C03. The data were collected by the data acquisition system Pulse type 3650C.

3.2. Mode shape estimation

Any discrete system can be described by equation of motion:

M €xðtÞ þ C _xðtÞ þ KxðtÞ ¼ FðtÞ, (17)

where M, C, K are the mass, damping and stiffness matrices, respectively. Laplace transform of equation of
motion (17) gives:

ðMs2 þ Csþ KÞXðsÞ ¼ FðsÞ, (18)

where s is a Laplace variable. Eq. (18) can be rewritten as

BðsÞXðsÞ ¼ FðsÞ, (19)

where BðsÞ known as a system matrix. Transfer function matrix is defined as follows (e.g. Ref. [20]):

HðsÞ ¼ BðsÞ�1 (20)
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Evaluating the transfer function matrix along the frequency axis (s ¼ io) results in frequency response
function (FRF) matrix given as

HðoÞ ¼ XðoÞ FðoÞ½ �
�1. (21)

Matrix H of size m�m, where m denotes a number of degrees of freedom, contains individual FRFs Hjk(o)
obtained by impacting point k and measuring the response at point j. To determine one row of the FRF matrix
H(o) the modal hammer signal is measured in all points whereas the acceleration is measured still in the same
one point. Mode shape is contained in each row or columns of FRF matrix. The most informative is the
imaginary part of FRF since it shows both the amplitude and the direction of the response. An example of the
beam FRF is shown in Fig. 7a. The function H48,41(o) is obtained by impacting the beam at point 41 and
measuring the response at point 48. The example of the FRF H74,60(o) for the plate is presented in Fig. 7b.
The obtained FRFs allowed precise identification of the structures lowest frequencies. The experimental first
frequency of the beam was found to be f1 ¼ 23.375Hz. The fundamental frequency of the plate was
f1 ¼ 65.0Hz. The experimentally determined mode shapes for the beam and plate are given in Figs. 8 and 9b,
respectively.

4. Numerical mode shapes of beam and plate

The mode shapes for the notched beam and plate were computed by the commercial FEM program
SOFiSTiK. The beam mode shape was calculated using a solid six-sided element of length 2mm. The mode
shapes of the plate were computed using square plane element of the size 40� 40mm. The first calculated
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frequency for the beam is f1 ¼ 23.62Hz while the plate first frequency is f1 ¼ 65.21Hz. The computed
frequencies of both structures are very similar to the experimentally obtained frequencies. A comparison
between the numerical and experimental mode shapes is given in Figs. 8 and 9. The beam experimental mode
shape (Fig. 7) is slightly underestimated for the region near the support. This discrepancy is due to the
difficulties in obtaining an ideal fixed support of the beam. The first numerical and experimental mode shapes
of the plate (Figs. 9a and b) have to be presented separately since the obtained results are almost identical.

Since the mode shape of the beam was measured with sampling distance of 10mm and calculated with
sampling distance of 2mm, a piecewise cubic spline data interpolation is used to decrease sampling distance to
1mm. The mode shape of the plate is also interpolated to decrease sampling distance from 40 to 1mm. Then
each mode shape line is normalized to 1.

5. Results of the wavelet analysis

5.1. Border distortion problem

The CWT is defined as integration of the product of a wavelet and a signal of infinite length. Since mode
shape of the beam f (x) as well as the mode shape of the plate f (x, y) are signals of finite length a border
distortion problem appears. The wavelet coefficients achieve an extremely high value at the ends of a signal
and those values do not indicate damage. Therefore, the border of the signal should be treated independently
from the rest of the signal. The influence of boundary effects can be reduced by extension from the signal
beyond the boundary. It is obvious that the length of the extended signal depends on the scale of the used
wavelet. The edge effect width can be estimated as a half-width of the wavelet with the highest scale. In this
paper, to avoid large discrepancy at the boundaries, the signal is extended outside its original support by a
cubic spline extrapolation [1,15] based on four neighbouring points. The spline provides a technique for
obtaining a smoother extrapolation. The extrapolation is continuous, with continuous first and second
derivative. However, the fourth derivative, used in this paper, is allowed to have jumps at the connection
points. Therefore, the integration of the wavelet function with the mode shape near the location of the plate
edges can result in small non-zero values of the CWT coefficients.

5.2. One-dimensional wavelet transform of beam mode shape

The wavelet analysis is conducted on beam fundamental mode shape assumed as a spatially distributed
signal by the Gaussian wavelet family. The wavelet analysis is performed using gaus4 wavelet having four
vanishing moments, because the first beam mode shape is similar to polynomial of fourth order. The wavelet



ARTICLE IN PRESS

Fig. 10. Wavelet transform modulus of numerical first mode shape; (a) 3D view; (b) top view.

Fig. 11. Wavelet transform modulus of experimental first mode shape; (a) 3D view; (b) top view.
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transform modulus computed from the first numerical mode shape is shown in Fig. 10. The one-dimensional
CWT of numerical mode shapes is performed for scales s ¼ 1–30. The modulus maximum value grows with
the increase of the scale and clearly points to the crack position at 121mm from the clamped end. The wavelet
transform modulus results based on the experimental data (Fig. 11) have additional maxima lines resulting
from the measurement noise. Nevertheless, the dominant maxima lines, corresponding to the crack positions,
increases monotonically and for larger scales they achieve the largest values. The crack location can be easy
recognized. Position of defect determined by wavelet analysis is 132mm. The relative error between the
identified crack centre and the its real position reaches 9.1%. The wavelet transforms of experimental
mode shapes require larger values of scales than wavelet transforms of numerical mode shapes. In the case
of experimental data crack positions cannot be detected for scales up to about 40 whereas in the case of
numerical data crack positions can be determined from scale 2.
5.3. Two-dimensional wavelet transform of plate mode shape

In the case of two-dimensional signals, the space-scale representation of a signal is a three-dimensional
problem (x,y,s). In order to limit the computation as well as the memory requirements it is possible to change
continuous scale to scale variations limited to dyadic sequence (s ¼ 2j) leading to discrete wavelet transform
(DWT). This approach can be successfully used in the case of the image processing for edge detection, where
the analysis is conducted at fine scales. However, in the case of damage location in structures, higher scales are
necessary. Between scale s ¼ 32 and 64 there is a big gap in wavelet resolution and important piece of
information might be lost. Therefore, costs of computations cannot be limited in this case and application of
continuous scales is recommended.
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The results of the wavelet transform of the plate fundamental mode shape are wavelet coefficients for
different scales. A presence of the defect is detected by a sudden change in a spatial variation of the
transformed response. The horizontal coefficients W 1f (u, v, s), the vertical coefficients W2f (u, v, s) and the
wavelet transform moduli Mf (u, v, s) for the numerical and experimental data are given in Figs. 12 and 13,
respectively. The results presented in Figs. 12 and 13 are computed at scale s ¼ 40. In the case of damage
detection application, the W 1f (u, v, s) wavelet component indicates the signal abnormalities along the width of
the plate, i.e., along the y coordinate. This is because the detecting action is performed by function c along y

coordinate. The W 2f (u, v, s) component indicates the abnormalities along the length of the plate. Although the
coefficient W 1f (u, v, s) presented in the first row of the Fig. 12 is computed for the two-dimensional approach,
the coefficient lines along the y coordinate resemble the shape of the wavelet function c(y). By analogy, the
lines of the vertical coefficient along x coordinate resemble the c(x) function. The distribution of the
horizontal and vertical coefficients in x and y directions is similar, which suggests that the shape of the defect
Fig. 12. Wavelet coefficients and wavelet transform modulus for the plate using rbio5.5 wavelet based on numerical data.
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Fig. 13. Wavelet coefficients and wavelet transform modulus for the plate using rbio5.5 wavelet based on experimental data.
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has similar dimensions in both directions. The third row of the Fig. 12 presents the modulus of the 2D wavelet
coefficients and the visible cross, on the top view plot, combines the information stored in the W1f (u, v, s) and
W2f (u, v, s) wavelet transform components.

The peak in the modulus Mf (u, v, s) based on numerical (Fig. 12) as well as Mf (u, v, s) based on the
experimental data (Fig. 13) clearly indicates the defect position and its shape. In the case of the experimental
data, the presence of some noise does not mask the signal abnormalities and the position and the size of the
crack can be estimated. The local maximum of Mf (u, v, s) based on the experimental data is in the distance of
x ¼ 240mm and y ¼ 243mm from the left–down plate corner. The real location of defect is x ¼ 240mm and
y ¼ 240mm from the left–down plate corner and it is in agreement with the maximum from numerical data.
Difference between the recognized by wavelets defect centre position with actual one amount 1.25% in
the vertical direction and there is no difference in the horizontal direction. The maximum value of the
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Fig. 14. Angle of the wavelet transform vector: (a) numerical data; (b) experimental data.
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experimental wavelet transform modulus Mf (u, v, s) is about four times larger than the corresponding
numerical modulus.

Additional information about the defects can be obtained from analysis of the angle Af(u, v, s) However,
in the case of the experimental data the noise corrupts the information contained in the angle plot. Since
the coefficients W1f (u, v, s) and W2f (u, v, s) often change signs, therefore the angle of the gradient vector
~rðf � ȳsÞðx; yÞ quickly changes its values (Fig. 14b). Therefore, it is impossible to directly locate the defect
position from experimental data. The angle plot obtained from the numerical data (Fig. 14a) points the defect
position by indicating the direction with sharpest signal variations.

6. Conclusions

The presented work is devoted to the wavelet-based damage detection techniques in beam and plate
structures. The wavelet transforms are applied to fundamental mode shapes of the beam and plate. The mode
shapes are determined experimentally and numerically. The one-dimensional wavelet analysis has been
extended for application in two-dimensional structures. The formulation of the wavelet transform for two-
dimensional plate problems is presented.

The study on wavelet analysis applied in damage detection leads to the following conclusions and
suggestions:

1. CWT are more suitable for damage detection than DWT. The CWTs provide precise resolution
necessary for damage localization.
2. The border distortion problem must be addressed. At least the first and second derivative of the
extrapolation, outside the geometric boundary conditions, must be continuous.
3. Symmetric wavelets are appropriate for beam and plate damage detection. The considered Gaussian and
reverse biorthogonal wavelets proved to be effective in the presented examples.
4. The wavelet transforms act as differential operators providing the information on signal derivatives. The
order of the derivative is equal to the number of the vanishing moments.
5. The number of vanishing moments of the applied wavelet must be at least two. However, it has been
shown that better resolution of the transformed response is obtained with wavelets having four and more
vanishing moments.
6. The two-dimensional wavelet transform has been adopted and applied for two-dimensional structure
responses. Modulus and gradient of two-dimensional wavelet transform are good indices of the damage
localization.
7. Dynamic impulse tests and estimation of FRF provides easy and precise method for mode shape
identification for the considered beam and plate.
8. The wavelet detection method might localize even small flaws in plate structures. The development of the
damage detection techniques based on wavelet analysis is on a very early stage. Further studies towards
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high quality measurements and application of statistical pattern recognition techniques should be
conducted.
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